Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nature ; 617(7962): 764-768, 2023 May.
Article in English | MEDLINE | ID: covidwho-2325395

ABSTRACT

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).


Subject(s)
COVID-19 , Critical Illness , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genotype , Phenotype , Genetic Variation/genetics , Whole Genome Sequencing , Transcriptome , Monocytes/metabolism , rab GTP-Binding Proteins/genetics , Genotyping Techniques
2.
Science ; 374(6567): eabj3624, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1440797

ABSTRACT

Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that 2'-5'-oligoadenylate synthetase 1 (OAS1), through ribonuclease L, potently inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a common splice-acceptor single-nucleotide polymorphism (Rs10774671) governs whether patients express prenylated OAS1 isoforms that are membrane-associated and sense-specific regions of SARS-CoV-2 RNAs or if they only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. In hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting that this antiviral defense is a major component of a protective antiviral response.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , COVID-19/genetics , COVID-19/physiopathology , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , SARS-CoV-2/physiology , 5' Untranslated Regions , A549 Cells , Animals , COVID-19/enzymology , COVID-19/immunology , Chiroptera/genetics , Chiroptera/virology , Coronaviridae/enzymology , Coronaviridae/genetics , Coronaviridae/physiology , Endoribonucleases/metabolism , Humans , Interferons/immunology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Polymorphism, Single Nucleotide , Protein Prenylation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Retroelements , SARS-CoV-2/genetics , Severity of Illness Index , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL